CrawlSpider全站爬取
CrawlSpider
CrawlSpider是Spider的一个子类,具有提取指定规则链接的功能
CrawlSpider的作用:
- 全站爬取
- 基于Spider手动请求
- 基于CrawlSpider
项目创建
scrapy startproject crawl_spider
cd crawl_spider
- 创建基于CrawlSpider的爬虫类:
scrapy genspider -t crawl storyxc xxx.com
相比普通的增加了-t crawl
参数
链接提取器
根据指定规则(allow=‘正则表达式“)提取符合要求的所有url
python
link = LinkExtractor(allow=r'id=1&page=\d+')
规则解析器
将链接提取器提取到的链接进行指定规则(callback)的解析
python
rules = (
Rule(link, callback='parse_item', follow=True),
)
- follow参数的作用:
- True:可以将链接提取器继续作用到链接提取器提取到的链接(递归)
- False:只提取起始页的数据
案例:提取东莞阳光问政平台的问政标题和编号
爬虫类
python
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from crawl_spider.items import CrawlSpiderItem,DetailItem
class StoryxcSpider(CrawlSpider):
name = 'storyxc'
start_urls = ['http://wz.sun0769.com/political/index/politicsNewest']
# 链接提取器,符合正则表达式的链接都会被提取
link = LinkExtractor(allow=r'id=1&page=\d+')
detail_link = LinkExtractor(allow=r'\/political\/politics\/index\?id=\d+')
rules = (
Rule(link, callback='parse_item', follow=True),
Rule(detail_link, callback='parse_detail'),
)
def parse_item(self, response):
li_list = response.xpath('/html/body/div[2]/div[3]/ul[2]/li')
for li in li_list:
wz_id = li.xpath('./span[1]/text()').extract_first()
wz_title = li.xpath('./span[3]/a/text()').extract_first()
item = CrawlSpiderItem()
item['num'] = wz_id
item['title'] = wz_title
yield item
def parse_detail(self, response):
id = response.xpath('/html/body/div[3]/div[2]/div[2]/div[1]/span[4]/text()').extract_first()
id = id.replace('编号:','')
content = ''.join(response.xpath('/html/body/div[3]/div[2]/div[2]/div[2]/pre/text()').extract())
item = DetailItem()
item['num'] = id
item['content'] = content
yield item
item类
python
# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
import scrapy
class CrawlSpiderItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
title =scrapy.Field()
num = scrapy.Field()
class DetailItem(scrapy.Item):
num = scrapy.Field()
content = scrapy.Field()
Pipeline类
python
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
from crawl_spider.items import CrawlSpiderItem, DetailItem
import pymysql
class CrawlSpiderPipeline:
def process_item(self, item, spider):
if item.__class__.__name__ == 'DetailItem':
with Mysql() as conn:
cursor = conn.cursor()
try:
cursor.execute(
'insert into tb_wz_content(id,content) values("%s","%s")' % (
item['num'],item['content']))
conn.commit()
except:
print('插入问政内容失败!')
conn.rollback()
else:
with Mysql() as conn:
cursor = conn.cursor()
try:
cursor.execute(
'insert into tb_wz_title(id,title) values("%s","%s")' % (item['num'],item['title']))
conn.commit()
except:
print('插入问政标题失败!')
conn.rollback()
class Mysql(object):
def __enter__(self):
self.connection = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='root', database='python')
return self.connection
def __exit__(self, exc_type, exc_val, exc_tb):
self.connection.close()
settings
python
BOT_NAME = 'crawl_spider'
SPIDER_MODULES = ['crawl_spider.spiders']
NEWSPIDER_MODULE = 'crawl_spider.spiders'
# Crawl responsibly by identifying yourself (and your website) on the user-agent
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36'
# Obey robots.txt rules
ROBOTSTXT_OBEY = False
ITEM_PIPELINES = {
'crawl_spider.pipelines.CrawlSpiderPipeline': 300,
}
启动爬虫:
数据库会新增数据